Approved for Release: 2017/02/08 C05094776

TOP SECRET ___

SAVINGS PROJECTIONS

FOR

NRP/STS LAUNCHES

MAY 1973

HEXAGON GAMBIT
Handle via BYEMAN
Control System

TOP SECRET

(b)(1) (b)(3) 10 USC ¹ 424

TOP SECRET

QUALIFICATIONS AND ASSUMPTIONS FOR MAY 1973 NRP-STS STUDY

1.	The	base]	line	payload	pro	ogram	used	l in	the	study	reflects	the
best	cur	rent	proj	ections	of	over	nead	co11	.ecti	ion ne	eds.	

	A studies).	F11900	cnrougn	F11991	(consistent	with	latest
3.							

- 4. All STS-launched imagery payloads are retrieved and refurbished
- 5. A refurbished payload can be retrieved, recycled and relaunched in a minimum time of 9 months.
- 6. Refurbished payloads cost from 50% to 70% of original and two refurbishments are permitted.
- 7. Non-recurring STS adaptation costs for payloads to be retrieved/refurbished are 77% of current SV unit cost; recurring costs are 4%/launch (minimum).
- 8. Non-recurring STS adaptation costs for payloads not designed to be retrieved/refurbished are 50% of current SV unit cost; recurring costs are 4%/launch.
- 9. Refurbishment costs maintain the production (industry) base. There are no cost penalties for lower production rates associated with refurbished payloads, and there are no increased overhead rates for the lower-cost payloads.
- 10. STS costs are \$10.5M per launch and TUG/00S costs are \$1M per launch. These costs which represent May 1973 NASA estimates include all required services, hardware, and STS refurbishment costs.
- 11. Only one STS flight is charged for a launch/retrieval operation.

(b)(1)	
(b)(3)	
10 USC $^\perp$	424

TOP SECRET

CONTROL N	o	
COPY	0F	COPIES
PAGE]	or <u>2</u>	PAGES

TOP SECRET -

- 12. Non-recurring costs for payload growth or normal improvements are not included.
- 13. The STS is always available to satisfy projected launch/retrieval requirements.

14.	There	are	no	launch	or	on-orbit	failures.

(b)(1) (b)(3) 10 USC ¹ 424

BYEMAN CONTROL SYSTEM

TOP SECRET

COPY_____OF____COPIES
PAGE______OF_______PAGES

TOP SECRET

HANDLE VIA BYEMAN CONTROL SYSTEM

NRP LAUNCH PROJECTION FOR FY1980-FY1991

BASELINE													_
PROGRAM	80	81	82	83	184	85_	86	87	88	89	90	91	_Total
HEXAGON(2/yr)	2	2	2	2	2	2	2	2	2	2	2	2	24
GAMBIT(2/yr)	2	2	2	2	2	2	2	2	2	2	2	2	24

OPTION 1 .

HEXAGON(3/yr)

TOTAL

П													
	3	3	3	3	3	3	3	3	3	3	3	3	36

GAMBIT HEXAGON

HANDLE VIA BYEMAN

TOP SPORT

Approved for Release: 2017/02/08 C05094776

(b)(1) (b)(3) 10 USC ¹ 424

HANDLE VIA BYENAM CONTROL SYSTEM

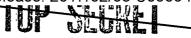
SELECTED CASES FOR COST ANALYSIS

CASE I

Approximates normal tran	nsition to STS.
--------------------------	-----------------

Imagery satellites launched by STS are retrieved, refurbished and reused.
CASE II
CASE I with TUG/00S replacing Agenas & Transtages.
- TUG/OOS are retrieved. refurbished & reused.
CASE III
CASE III
Approximates 12 years of normal steady-state operations.
No RDT&E costs are included.STS used for all payloads.
All imagery satellites are retrieved, refurbished and reused.
<u>CASE IV</u>

(b)(1) (b)(3) 10 USC ¹ 424 Approved for Release: 2017/02/08 C05094776


HANDLE VIA BYENDAY
CONTROL SYSTEM

CASE V

CASE	III	with	TUG/OOS	replacing	Agenas	&	Transtages.
------	-----	------	---------	-----------	--------	---	-------------

(b)(1) (b)(3) 10 USC ¹ 424

HANDLE VIA BYEMAN CONTROL SYSTEM

PROJECTION OF NRP SATELLITE PURCHASES & REFURBISHMENTS

BASELINE PROGRAM	CASES I & II NEW1/ REFURBISHED		CASES III & IV NEW REFURBISHED			CASE V REFURBISHED	TOTAL	OPERATION
HEXAGON(2/yr)	12(6)	12	8	16	8	16		24
GAMBIT	12(6)	12	8	16	8	16		24

OPTION 1

HEXAGON(3/yr) 18(9) 18 12 24 12 24 36

(b)(1) (b)(3) 10 USC ¹ 424

HEXAGON GAMBIT

HANDLE VIA DYEMAN CONTROL SYSTEM

TOP SECRET

^{1/} The numbers in parentheses are those new payloads launched from SLV's (i.e., prior to STS transition).

HANULE VIA DILITIES CONTROL SYSTEM

NRP-STS LAUNCHES

POTENTIAL PAYLOAD SAVINGS FOR FY 1980-FY 1991 PERIOD

			, RF			RF
CASE I		BASELINE (2 HEX/YR)	OPTION 1 (3 HEX/YR)	_(BASELINE (2 HEX/YR)	OPTION (3 HEX/Y
Transition Imagery Refur- bishment Agena/Transtage	,					
CASE II	. /	-				
Transition Imagery Refur- bishment TUG/00S	4					-
CASE III						
12 yr Steady-Sta Imagery Refur- bishment Agena/Transtage	te					
CASE IV						
12 yr Steady-Sta Imagery Refur- bishment TUG/OOS	te					
12 yr Steady-Star Imagery Refurbishment						
1/						
HEAVCON					(b)(1)	

BANDLE VIA PRUTERI CYCLER

(b)(1) (b)(3) 10 USC \(^1\) 424

RANDLE VIA 5325511 CONTROL SYSTEM

NRP-STS LAUNCHES

POTENTIAL TOTAL SAVINGS FOR FY 1980-FY 1991 PERIOD

_				
	50%		70%	
CASE I	BASELINE (2 HEX/YR)	OPTION 1 (3 HEX/YR)	BASELINE (2 HEX/YR)	OPTION 1 (3 HEX/YR)
Transition Imagery Refur- bishment Agena/Transtage				
CASE II				
Transition Imagery Refur- bishment TUG/OOS				
CASE III				
12 yr Steady-State Imagery Refur- bishment Agena/Transtage				
CASE IV				
12 yr Steady-State Imagery Refur- bishment TUG/OOS				
case v1/				
12 yr Steady-State Imagery				
Refurbishments				

1/

HEXAGON

HANDLE VIA BYEMAN CONTROL SYSTEM

TOP STORT

(b)(1) (b)(3) 10 USC ¹ 424 TOP SECRET

BYEMAN CONTROL SYSTEM

SUMMARY OF COST ANALYSIS

FOR

GAMBIT, HEXAGON,

PROGRAMS

(b)(1) (b)(3)

USING THE

10 USC ¹ 424

SPACE TRANSPORTATION SYSTEM

FY 1980 - FY 1991

PREPARED BY

SAFSP-6

FOR

NRO ANALYSIS OFFICE

FEBRUARY 1974

CLASSIFIED BY BYEMAN 1 EXEMPT FROM GENERAL DECLASSIFICATION SCHEDULE OF EXECUTIVE ODDER 11652 EXEMPTION CATE COPY____OF___COPIES
PAGE___OF___PAGES

BYEMAN CONTROL SYSTEM

ASSUMPTIONS AND QUALIFICATIONS
1. All costs are expressed in millions of FY-74 dollars.
2. STS launch costs per flight are: Shuttle - 12.2; Transtage min-mod 15-ft expendable - 4.4.
3. Costs for normal payload growth and improvements are included.
4. There are no cost penalties for smaller block buys or lower production rates associated with refurbishable vehicles.
5. STS launched imagery payloads are retrieved and refurbished twice. (b)(1) (b)(3) 10 USC \(^{1}\) 424
6. Launch and retrieval of imagery payloads are assumed on each STS flight.
7. Cost of payload refurbishment is 70% of unit production cost.
8. The STS is always available to satisfy projected launch/retrieval requirements and there are no launch failures.
9. Imagery payload on-orbit life is limited by expendables.
10. HEXAGON transition design is min-mod with dual T-IIID/STS launch capability and on-orbit operation life of six months. Four vehicle buy.
11. HEXAGON min-mod cost: Non-recurring is 77% of unit production cost and recurring is 4% of unit production cost.
12. HEXAGON optimized for STS (Block change design) has six recoverable vehicles, a nine-month on-orbit operating life and is capable of two or more reuses. Three vehicle buy.
13. GAMBIT transition design is uprated 90-inch system with dual STS/SLV capability and on-orbit operating life of six months.
14. GAMBIT optimized for STS (block change design) has one year operating life.

CONTROL	. NO	
		COPIES
PAGE	OF	PAGES

Approved for Release: 2017/02/08 C05094776

TOP SECRET

BYEMAN

CONTROL SYSTEM

(b)(1) (b)(3) 10 USC ¹ 4

ASSUMPTIONS AND QUALIFICATIONS (CONTINUED)	10 USC ¹ 424
15.	
16	
	(b)(1) _(b)(3) 10 USC [⊥] 424
17. Backup boosters are provided for the first tw STS transition in the case of imagery vehicles	o years of

BYEMAN CONTROL SYSTEM TOP SECRET

CLASSIFICO EV BYEMAN 1 EXEMPT FROM
GENERAL DOCLASSIFICATION SCHEDULE OF
EXECUTIVE ORDER 11652 EXEMPTION CATE

COPY OF COPIES
PAGE OF PAGES

Approved for Release: 2017/02/08 C05094776

TOP SECRET

SITUATIONS CONSIDERED

CASE I: ETR STS IOC Dec 79, VAFB STS IOC Dec 1982.

CASE II: ETR STS IOC Dec 79, VAFB STS IOC Dec 1985.

CASE III: No STS Operations at VAFB. Imaging Systems

Launched on SLVs from VAFB.

CASE IV: All Systems Launched from ETR on STS.

HANDLE VIA

BYEMAN

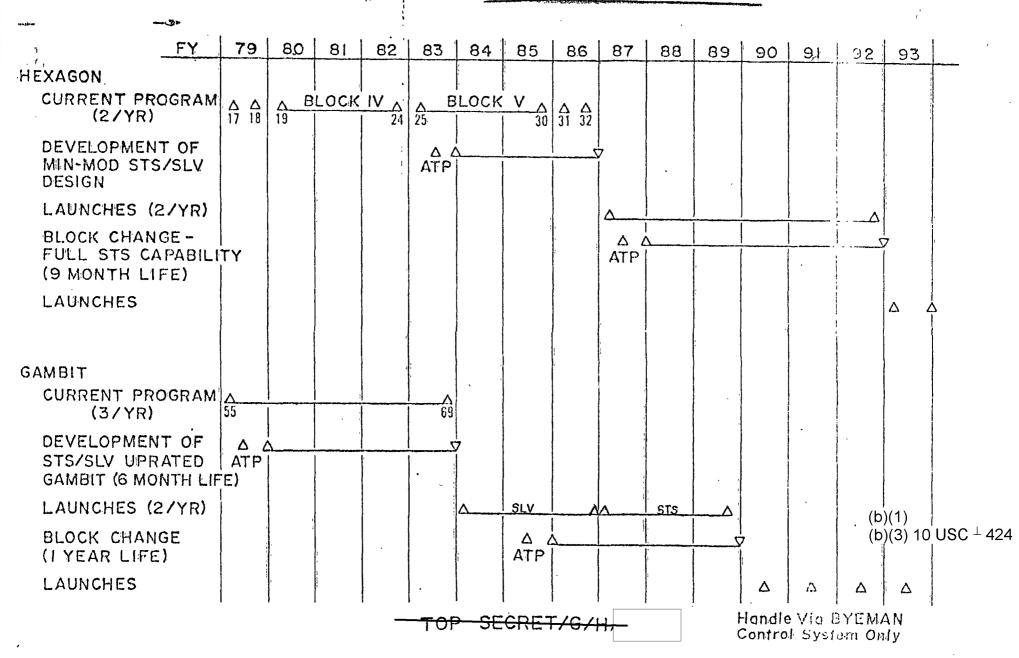
CONTROL SYSTEM

CLASSIFIED BY BYEMAN 1 EXEMPT PROM GENERAL DECLASSIFICATION SCHEDULE EXECUTIVE ORDER 11652 EXEMPTION CATE CONTROL NO COPIES

PAGE OF PAGES

Bye-93540-74. ES ly 1

SAFSP STS TRANSITION COST STUDY SCHEDULES PHOTO SYSTEMS - VAFB 10C - DECEMBER 1982

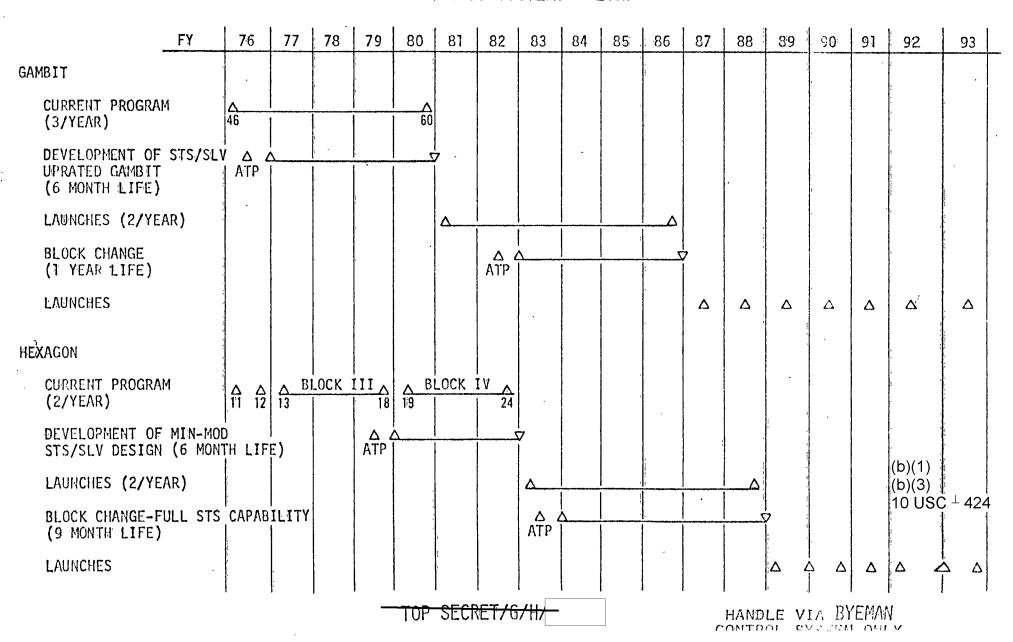

<u>FY</u>	79	09	81	82	83	84	85	86	87	88	89	90	91	92	93	
HEXAGON																
CURRENT PROGRAM (2/YR)	Δ Δ 17 18	19	BLOCK	24	Δ Δ 25 26						!					
DEVELOPMENT OF MIN-MOD STS/SLV DESIGN		ATP	<u> </u>			 										
LAUNCHES (2/YR)						<u>۸</u>								,		
BLOCK CHANGE – FULL STS CAPABILI (9 MONTH LIFE)	 TY 					Δ Δ ATP								,		
LAUNCHES												Δ 4	7 ∇.	Δ		7
		:											1			
GAMBIT											,), ' 				
CURRENT PROGRAM (3/YR)	<u>^</u> 55	<u> </u>			69	, 1			·	-						
DEVELOPMENT OF STS/SLV UPRATED GAMBIT (6 MONTH LIF	ΑΤΡ E)				5	 	:		ı		1.		,	·		
LAUNCHES (2/YR)						Δ			,							
BLOCK CHANGE (I YEAR LIFE)					,		Δ A ATP	\ 			2:	7				
LAUNCHES						,						Δ	Δ	Δ	Δ	
1	,			_	TOF	SE	CRET	F /G/ I	+				Via E I Syst			,

(b)(1)

(b)(3) 10 USC \(^1\) 424

By-93540-74

SAFSP STS TRANSITION COST STUDY SCHEDULES PHOTO, SYSTEMS-VAFB 10C-DECEMBER 1985



(b)(1) (b)(3) 10 USC [⊥] 424

Byz-93540-74

SAFSP STS TRANSITION COST STUDY SCHEDULE (PHOTO SYSTEMS - ETR)

TOP SECRET

SAFSP STS TRANSITION COST STUDY
(FY 1980 - FY 1991)

CASE I - VAFB IOC DECEMBER 1982*

SYSTEM	BASELINE COST	DELTA COST
HEXAGON		
GAMBIT		

*With SLV Backup capability.

(b)(1) (b)(3) 10 USC [⊥] 424

HANDLE VIA BYENNA CONTROL SYSTEM

TOP, SECRET

SAFSP STS TRANSITION COST STUDY

SUMMARY OF SAVINGS (FY 1980 - FY 1991)

	CASE I	CASE II	CASE III	CASE IV
With SLV Backup Capability				
Without Backup Capability				

(b)(1) (b)(3) 10 USC [⊥] 424

BANDLE VIA BYERNÍN

TOP SECRET

TOP SECRET

SAVINGS PROJECTIONS

FOR

NRP/STS LAUNCHES

MAY 1973

HEXAGON GAMBIT
Handle via BYEMAN
Control System

(b)(1) (b)(3) 10 USC ¹ 424

TOP SECRET

QUALIFICATIONS AND ASSUMPTIONS

1.	The	base	line	payload	pro	gram	used	in	the	study	reflects	the
best	: cui	rrent	proj	ections	of	overh	nead	col1	.ecti	on ne	eds.	

2.	Study	period:	FY	1980	through	FY	1991	(consistent	with	latest
NAS	A stud	ies).								

			4		
4.	Only direct	program costs	(FY73 dollars)	for payload a	ind launch
are	considered.	Costs for po	tential payload	growth or nor	mal improve-

- 5. All STS-launched imagery payloads are retrieved and refurbished,
- 6. A refurbished payload can be retrieved, recycled and relaunched in a minimum time of 9 months.
- 7. Refurbished payloads cost from 50% to 70% of original and two refurbishments are permitted.
 - 8. Non-recurring STS adaptation costs for payloads to be retrieved/ refurbished are 77% of current SV unit cost; recurring costs are 4%/ new payloads daunch (minimum).

3.

ments are not included.

TOP SECRET

(b)(1) (b)(3) 10 USC ¹ 424

QUALIFICATIONS AND ASSUMPTIONS (CONTINUED)

- 9. Non-recurring STS adaptation costs for payloads not designed to be retrieved/refurbished are 50% of current SV unit cost; recurring costs are 4%/launch. new payload,
- 10. Refurbishment costs maintain the production (industry) base. There are no cost penalties for lower production rates associated with refurbished payloads, and there are no increased overhead rates for the lower-cost payloads.
- 11. STS costs are \$10.5M per launch and TUG/OOS costs are an additional \$1M per launch. (These costs, the May 1973 NASA estimates, include all required launch vehicle hardware and services.)
- 12. Only one STS flight is charged for a launch/retrieval operation.
- 13. The STS is always available to satisfy projected launch/retrieval requirements.
- 14. There are no launch or on-orbit failures.

(b)(1) (b)(3) 10 USC ¹ 424

TOP SECRET

NRP LAUNCH PROJECTION FOR FY1980-FY1991

В	A	S	\mathbf{EL}	Ι	NE

PROGRAM	80	81	82	83	84	85	86	87	88	89	90	91	<u>Total</u>
HEXAGON(2/yr)	2	2	2	2	2	2	2	2	2	2	2	2	:24
GAMBIT(2/yr)	2	2	2	2	2	2	2	2.	2	2	2	2	24

OPTION 1

HEXAGON(3/yr)

TOTAL

3 3 3 3 3 3 3 3 3 3 3 3

GAMBIT HEXAGON

ANDLE VIA BYEMAN CONTROL SYSTEM

TOP SLORET

(b)(1) (b)(3) 10 USC [⊥] 424

HANDLE VIA BYEMAN CONTROL SYSTEM

SELECTED CASES FOR COST ANALYSIS

CASE I

Approximates normal transition to STS.

- ETR: FY81 - WTR: FY83

Imagery satellites launched by STS are retrieved, refurbished and reused.

CASE II

CASE I with TUG/OOS replacing Agenas & Transtages.

- TUG/00S are retrieved, refurbished & reused.

(b)(1) (b)(3) 10 USC ¹ 424

SELECTED CASES FOR COST ANALYSIS (CONTINUED)

CASE III

Approximates 12 years of normal steady-state operations.

- No RDT&E costs are included.
- STS used for all payloads.

All imagery satellites are retrieved, refurbished and reused.

CASE IV

CASE III with TUG/OOS replacing Agenas & Transtages.

(b)(1) (b)(3) 10 USC [⊥] 424

- TUG/OOS are retrieved, refurbished and reused.

CASE V

CASE III with TUG/OOS replacing Agenas & Transtages.

PROJECTION OF NRP SATELLITE PURCHASES & REFURBISHMENTS

BASELINE PROGRAM	17	ES I & II REFURBISHED	<u>CAS</u> NEW	ES III & IV REFURBISHED	new	CASE V REFURBISHED		TOTAL OPERATION
HEXAGON(2/yr)	12(6)	12	8	16	8	16	, 1	24
GAMBIT	12(6)	12	8	16	8	16		24

OPTION 1

HEXAGON(3/yr) 18(9) 18 12 24 12 24 36

HEXAGON GAMBIT

HANDLE VIA BYENNAM CONTROL SYSTEM

(b)(1) (b)(3) 10 USC ¹ 424

^{1/} The numbers in parentheses are those new payloads launched from SLV's (i.e., prior to STS transition).

TOT CLESSED

CONTROL SYSTEM

NRP-STS LAUNCHES

POTENTIAL PAYLOAD SAVINGS FOR FY 1980-FY 1991 PERIOD

50% RF 70% RF BASELINE OPTION 1 BASELINE OPTION CASE I (2 HEX/YR)(3 HEX/YR)(2 HEX/YR)(3 HEX/Y Transition Imagery Refurbishment Agena/Transtage CASE II Transition Imagery Refurbishment TUG/00S CASE III 12 yr Steady-State Imagery Refur-, bishment Agena/Transtage CASE IV 12 yr Steady-State Imagery Refurbishment TUG/00S CASE V1/ 12 yr Steady-State Imagery

_1/

HEXAGON

BANDLE VIA DY ENGLAND

TO COULT

(b)(1) _(b)(3) 10 USC \(^1\) 424

UI VAGALI

CONTROL SYSTEM

NRP-STS LAUNCHES

POTENTIAL TOTAL SAVINGS FOR FY 1980-FY 1991 PERIOD

50% RF 70% RF BASELINE OPTION 1 BASELINE OPTION 1 CASE I (2 HEX/YR)(3 HEX/YR)(2 HEX/YR)(3 HEX/YR Transition Imagery Refurbishment Agena/Transtage CASE II Transition Imagery Refurbishment TUG/00S CASE III 12 yr Steady-State Imagery Refurbishment Agena/Transtage CASE IV 12 yr Steady-State Imagery Refurbishment TUG/00S CASE V1/ 12 yr Steady-State Imagery

1/

HEXAGON

RAMPIE VIA BYEARA HORARA HORAR

(b)(1) (b)(3) 10 USC [⊥] 424

SUMMARY OF POTENTIAL NRP SAVINGS

			(b)(1) (b)(3) 10 USC [⊥] 424
	12-YR TRANSITION	12-YR STEADY-STATE	
PAYLOAD SAVINGS			1
TOTAL SAVINGS			

Approved for Release: 2017/02/08 C05094776

Handle via BYEMAN Control System

DEADHEADING COSTS

ASSUMPTIONS

- 1. Only refurbishable satellites are considered.
- 2. Two STS flights launch and recovery are charged/satellite.
- 3. Satellites are not recovered after the second refurbishment.

Baseline Option 1
(2 HEX/YR) (3 HEX/YR)

(b)(1)
(b)(3) 10 USC \(^{1}\) 424

CASES III & IV

CASE V

Handle via BYEMAN Control System

TOP SECRET